
VBA! Will It Ever Die?
Shôn Ellerton, June 24, 2019

Do you feel like a dinosaur or get condescending looks from programmers when you state

you’re an expert with VBA? So why is it that job profiles are increasingly seeking VBA

experts? Will VBA ever become a deprecated feature of MS Office?

VBA! Will it ever die?

I recently came across a job profile that required someone with expert

knowledge of VBA (Visual Basic for Applications) to maintain and improve

their legacy project-management systems. It sparked my interest because I

consider myself to be an expert in VBA having programmed with it since 1997

creating a wide assortment of MS Access and Excel client applications which

were very successful during their times. Until recently, I deliberately avoided

mentioning VBA on my CV should I be considered a dinosaur within the IT

industry. However, that now appears to be a mistake.

VBA is quite a powerful procedural programming language in-built into

Microsoft’s Office products since the mid-1990s. Best known for its macros,

VBA can do so much more. You can build complete applications using any of

Microsoft’s Office products which is incredibly attractive for many businesses

running Microsoft Office as no additional licencing costs are needed as the

software has already been installed.

Like COBOL and FORTRAN, VBA is here to stay for a very long time despite

the near-extinction of dedicated VBA training courses offered by popular online

training platforms and the decrease in numbers of those proficient in

programming it.

What is VBA anyway?

If you do not know what VBA is, it stands for Visual Basic for Applications.

VBA sits at the heart of our everyday Microsoft Office products including

Word, Excel, Access, Visio and many more. You can create simple macros up

to highly advanced applications by creating independent modules and classes

importing a wide variety of reference libraries including those from other Office

products, third-party products and, of course powerful data libraries like

ActiveX Data Objects (ADO). Below is a screenshot of a part of a procedure I

wrote in VBA accessing data using ADO to populate drop-down boxes within

an Access client.

One can build independent client applications simply by wrapping them into a

VB6 project. Although VB6 was deprecated in 2008, VBA still lives on and

was even given a bit of an upgrade in 2010. Microsoft’s current suite of

dot.NET projects (C#, VB, C++) offer significantly more in the way of features

and functionality; however, the steeper learning curve of building and deploying

.NET applications is very much largely in the domain of the dedicated

programmer whereas getting started with VBA is exceptionally easy. There

does comes a point, when building complex applications using VBA rather than

.NET starts to become more difficult as one needs to delve into complex API

calls and COM objects. Historically, before the rise of the dedicated

professional programmer, all computer programs were written by those directly

in the business for which the program was required. For example, my late

grandfather wrote countless number of FORTRAN programs to run data

analysis results for sugar beet trials back in the 1960s.

My story with VBA

As for my own story, I’ve been working with data for more than 20 years and

managed to build entire client/server database systems for a wide variety of

projects, especially within the telecommunications and wireless networks

industries. Many of these systems, I designed from first principles taking

requirements from the project’s consumers, building a suitable relational data

model, providing a means for users to access and update data, supplying a

reporting platform and implementing automated data exchange routines

between the client and the project. In a nutshell, the primary object of the game

was to stop the practice of using spreadsheets to store corporate and project data

and, instead, migrate the data to a single-source of truth to which spreadsheets

could consume the data for analysis and reporting use.

Many of these systems grew into full-blown client/server systems using a

variety of tools including MS SQL Server, SSIS, SSRS, SSAS, C#-coded web

services, Power BI, and of course, the humble Excel spreadsheet to consume

data. Not surprisingly, deploying blank ‘refreshable’ Excel spreadsheets with

direct ODBC connections has always proved to be very popular with project

teams, usually much to the dislike of the IT departments due to security

considerations and a variety of other reasons. Whilst working with Visionstream

on a national Optus mobile base station rollout project in Australia, these

refreshable spreadsheets constituted 90 percent of all user reporting. Let me

repeat that, 90 percent! For nearly five years during the project, the IT

department kept threatening to close off the direct connections but having

offered no other practical solution, project leaders wielded their sticks and

objected and the threat never materialised. This battle is commonplace across

many industries.

Where VBA came useful was when I had the challenge of creating a multiuser

database environment using MS Access as the client and MS SQL Server as the

database. It was easy to link tables directly and create basic forms with Access;

however, the system got overwhelmed very quickly and died as soon as you had

more than a dozen users using it where large datasets needed to be accessed. To

remedy the situation, I used Access as a thin-client application with no local

data, purely using the underlying VBA/ADO code to access datasets from the

remote database. The application was ‘stateless’ implying that connections were

only opened when needed but then immediately closed when not needed. Only

the relevant data queried was carried to the client which meant bandwidth

requirements were minimal, an important aspect particularly in the days of

slower networks. ‘Write’ tasks were always executed via a stored procedure,

never directly against a base table, so security was never an issue so long as the

credentials were specified correctly. Another great feature about these clients

are that they are lightning fast so long as you code sensibly. Although web-

based clients can be pretty nimble and quick these days, they still have far more

latency than desktop client applications thus making the user experience far

more slow and cumbersome.

Coming from a civil engineering background, I had no formal training in

programming apart from a little FORTRAN. Not satisfied with how MS Access

functioned without customising it back in 1999, I purchased the marvellous relic

of a book shown below (along with a sample page) which set me on the path of

understanding recordsets and connectivity to datasources using VBA with

ADO. To me, at the time, it was the bible of how this all worked, and even now,

it explains the principles thoroughly, although the Internet has everything I need

these days.

One thing for sure, I worked way too many late nights and weekends in single-

handedly delivering these systems!

With creativity, one can transform a basic Access frontend into something

looking quite different from the standard layout. Below are some screenshots

from various Access clients I created over the years from projects encompassing

WLAN and mobile base station rollouts to SAP migration. Two of them were

eventually converted to web-based clients. Clearly, from the two bottom

screenshots, I re-used my design extensively!

VBA today

It so happens that many millions of applications have been written worldwide

using Microsoft Access with clever and creative VBA coding. Moreover, many

of these applications are still in existence today. And this is now turning into a

bit of a problem.

For anyone who has deployed Microsoft Office applications with custom VBA

code may have experienced the exasperating problem of Microsoft’s ongoing

product evolution, much of which, involves ‘death by a thousand cuts’ by

slowly deprecating features required to run the older applications. I experienced

this with a MS Access application called an Access Data Project (ADP) which

is now not at all runnable on the latest MS Access package. I once had to

convert one of the applications I made in the past for use in a present system by

running an older version of MS Access and converting it to the newer ACCDB

format, not a trivial matter if you don’t know how to. However, and this is the

beautiful thing, the VBA code still works flawlessly once the database

connection code was altered to suit.

I have noticed an increase in the number of job adverts looking for those who

are familiar with VBA coding, particularly with respect to database-driven

clients using MS Access. I encountered one the other day from an Australian

mining company who have a large quantity of legacy applications built like the

ones I used to build and now want to migrate this functionality to web-based

solutions. The last two applications I built (both for telco projects) were both

converted to web-based solutions; however, this required a considerable amount

of resources, and hence, expense, to convert and build. In an Agile environment,

this process required a team of specialists including a lead developer, C#.NET

programmers, a scrum master, an overseas team, a deployment tester, a trainer,

a DBA, web designers, and of course, the creator of the original project during

the initial stages. Moreover, the processes for changing the application became

far more exacting, procedural and costly. Many businesses do not have this

luxury and continue to use their legacy applications. However, as mentioned

earlier, the risk of losing required functionality by feature deprecation is a real

risk.

The biggest challenge businesses have using these legacy VBA-based systems

is ensuring that everyone has a version of the Office product which works.

Moreover, any changes to the client must be distributed out to the users,

whereas in a web-based environment, this is not an issue so long as the user’s

browser is compatible.

Conclusion

The question remains how long Microsoft will continue to support VBA in its

suite of Office applications. There are rumours that Javascript or some other

scripting language might take the place of VBA, or at least, run along beside it

as an optional scripting tool. Whether Javascript is better than VBA is out of

scope in this article; however, it would be safe to say that deprecating VBA

within the near future will encounter very strong opposition simply due to the

number of applications still using it worldwide.

Those embarking on learning computer languages may not regard learning VBA

to be of future significance to their IT careers; however, I believe VBA will still

be extensively used for many years ahead.

As for learning legacy programming languages, look at what’s happening with

COBOL programmers. There are many very large COBOL systems still running

today which require ongoing support. Experts in the field are getting harder to

find, most of which are either retired or passed away. Interestingly, many Indian

IT learning establishments have capitalised on this by offering COBOL as a

programming elective.

If you know VBA well, show it off. Like any programming language, what is

important is learning the principles of good programming like logic, efficiency

and code re-use. Don’t let anyone tell you that VBA isn’t a proper programming

language and that it’s on its dying legs. It’s likely that whoever would say that

never did any programming with VBA!

