
The Rise and Fall of Overcomplicated Systems 
Shôn Ellerton, September 12, 2019 

Let’s take a journey of how overcomplicated systems come into being, why they frequently 

fail and how to avoid them. It’s time to embrace simplicity. 

 

 

 

 

 

 

 

Many of us advocate that simplicity strives to thrive and complexity tends to 

die. We unearth ancient buildings of the simplest design while complex 

structures rot into a state of dangerous disrepair. Old Mercedes 280E cars from 

the 80s still straggle along in deepest darkest Africa because they’re easy to 

repair using simple and standard parts unlike many of today’s modern cars. One 

can even learn a great deal from our past wars favouring the use of simple over 

complex weapons and machinery. Longbows vs crossbows. AK-47 vs M16 

submachine guns. De Havilland Mosquitoes vs Messerschmidt Me-109 aircraft. 

As with the examples cited above, IT systems which are simple in design and 

easy to maintain can survive for a very long time. Moreover, they are cheaper 

and quicker to build and often meet their intended purposes. 

 

 

 

Back in early 2014, a small team comprising me, a lead developer, a C# coder 

and a reporting analyst put together a system required to service a national 



mobile base station rollout project in Australia from 2013 to 2018. The system 

supported several disciplines across the project from financials, town planning, 

property management, radio planning, logistics and milestone management and 

needed to cater for up to 700 users. At first, it was a little crude, but from day 

one, it was a functioning product and it worked. Our team was nimble enough to 

make the changes required to mature the system. 

Meanwhile, in the upper echelons of IT management, another project was 

heralding its way back in 2014 to create an ‘all-singing, all-dancing’ work 

management system which was to service all projects and all clients in the 

business. During 2017, this system was still under development and nowhere 

close enough to being used as a working product while racking up significant 

costs twenty times the amount of what was required to build the simpler system 

our team worked on. 

Complex systems do have their place; however, unless there is a compelling 

reason for not choosing a simpler solution, why do so many IT projects 

implement overcomplicated solutions? 

The ego of the architect 

The word, architect, conjures divine-like powers of creation. In my civil 

engineering days, my colleagues and I would often liken the typical architect to 

be that arrogant individual with a massive ego, an individual who gets all the 

credit for designing the world’s great structures, yet, not having the knowledge 

required to physically build them. We were, of course, students of civil 

engineering who ourselves, were at the mercy of being on the butt-end of jokes 

centred around crassness, simplicity, being classically uneducated along with 

the inability to form words with more than two syllables!  

 

 



Enter the world of IT where the data, enterprise and solution architects are the 

designers and creators of information technology frameworks. Coming from an 

engineering and project-management background, my debut into data 

architecture was markedly different from the many others who started their 

careers with backgrounds of having computer science and IT degrees. 

I love simplicity. If it works using basic technologies; why design a system 

which only the elitist few can understand? 

This, herein, lies the problem. For many data architects, the very notion of 

designing a system with bog-basic standard parts which any individual with a 

modicum of IT skills could dissect is almost unthinkable. 

I remember an occasion where we brought in the company’s enterprise architect 

to advise on how we could integrate our project tracking system into the overall 

corporate system. We also invited the project’s delivery-manager, an outspoken 

highly practical telecommunications engineer originally from Germany who 

despised anything overcomplicated. 

When the enterprise architect arrived, he herded us into a glass-panelled 

meeting room and immediately commenced with sketching endless flow and 

data architecture diagrams with a black texter, admonishing us on how we 

should have originally built the system. He talked incredibly fast seemingly 

without taking one single breath. None of us managed to get a complete 

sentence sideways throughout the one-way engagement. After the ‘lecture’ was 

given to us and the enterprise architect went on his merry way home (by jet), 

our delivery manager, dumbfounded, scratched his head and commented in a 

very dry and amusing way complete with thick German accent, ‘Who the f… 

was that clown?’. 

Needlessly to say, we didn’t take much of anything useful out that session. 

Certainly, not all solution, enterprise or data architects are like this, but a great 

many of them are from experience. 

 

Why design a system which only 

the elitist few can understand? 

 

 

 



Stranded on an island with little water 

Let’s dream up a scenario where we have fifty or so people stranded on a little 

island in the Pacific Ocean. Water and food supplies are running out. 20 miles 

away is a much larger island with all the food and water needed to sustain 

everyone for months. On the island which the stranded people are on, there is 

enough material to make boats or rafts to escape the island and flee to the much 

larger one. 

Now, the elected leaders of the stranded group have three choices to make. 

1) Build a large number of small rafts each capable of holding three or four 

people; 

2) Pool all resources together to build a much larger boat to accommodate 

everyone; or 

3) Sit and wait for rescue. 

 

 

 

Each option has its own risks. 

The first option is straightforward enough. Building a raft to support three or 

four people is not technically difficult and each one can be made near-identical 

to each other. Small rafts; however, are very much at the mercy of the sea and 

there could be a high risk of some of the rafts not making it to the larger island 

either from being destroyed or those on board getting lost straying from the 

group. However, the probability of some of the rafts making it is quite high. 

The second option is technically challenging. In this scenario, the deadline of 

building the boat is, effectively, running out of water. More than half the time 

will probably be spent in designing the boat; at which point, morale is probably 

sinking to an all-time low. Running out of time before a single piece of the boat 

is put together is a real risk. If the group did manage to build the boat and build 

it correctly; certainly, the risk of the sea destroying it is far reduced and the 



likelihood of all reaching the island in safety is high. When deadlines are 

critical, building a complicated solution is extremely risky. 

The third option is a total gamble. If the group is aware of the larger island 

being relatively near, it is unlikely that no attempt would be made to make way 

to the sanctuary of the larger island. 

This scenario suggests that as timeframes become increasingly critical, the 

solutions put forward become increasingly simple. 

 

When deadlines are critical, building a 

complicated solution is extremely risky 

 

Wait… I forgot what we’re doing this for! 

Whether designing a website, a car or a wheelbarrow, if nobody can picture 

what the final product will look like and what its primary purpose is, then the 

project is likely to fail usually due to unintended complexity being built into the 

product to cater for unknown variances in the final product. 

Many design offices display posters or drawings of their end-product to remind 

and reassure those working on the various design elements of what they are 

aiming to achieve. With complex products, teams are often broken down into 

sections to achieve completion of a small part of the complete product; 

however, they must all work together in unison with the same vision. If building 

a website, for example, the first and foremost task is to create a visual 

wireframe of the proposed website and show it to the entire team. 

Not having a clear vision of the purpose and proposed outcome of any project 

often leads to confusion and chaos. Furthermore, an entirely different product 

could be spawned! I’ve seen my 4-year-old boy randomly put bits of Lego 

together which could turn out to be anything; however, if I ask what he intends 

to build before laying a single piece, he often has a good crack at building 

something resembling it. 

The danger of not being clear on the final product is to design the uncertainty 

out by creating systems more complex and complicated than they may need to 

be to cope with rapidly changing or unclear requirements. 

 



The clearer a project’s purpose and outcome, the easier 

it is to keep the system focused and simple. 

 

Keep it simple, stupid 

The KISS principle is associated with Kelly Johnson, an aircraft engineer who 

was a proponent of building machinery of which repairs could be undertaken by 

an average mechanic in combat situations. 

This principle is one of the soundest principles that can be applied to just about 

anything in life. And this, of course, includes IT systems. 

 

 

 

During mid-2019, I had a short-term contract with an organisation servicing 

physically and mentally disabled patients. My job was to integrate data from 

other agencies and institutions into the organisation’s own system. The previous 

incumbent, another data architect, had to leave at very short notice and I was 

called on to ‘fill the gap’.  

Thankfully, he developed and documented a simple solution which most data 

professionals would have no problem in understanding. Moreover, he used bog-

standard well-known products in his solution. The solution may not have been 

the most elegant of all solutions, but it worked admirably, and I did not have to 

https://en.wikipedia.org/wiki/KISS_principle


spend an inordinate amount of time to unravel some custom funky bit of 

software riddled with obscure and arcane software technologies. 

 

Toys, toys, and more toys! 

 

Every year that passes by, a bucketload of new software and technologies battle 

with each other to earn a spot in the IT marketplace offering ease of use and a 

panacea to fix or remedy problem systems. Many of these products command 

incredibly high prices. 

For example, Alteryx, an advanced BI analytics tool, has some of the highest 

pricing I’ve come across with four to five-figure annual licences per user. Many 

data professionals laud the tool as being a saviour in simplifying complex data 

analysis and ETL processes. 

Snowflake, a cloud-based service aspires to really simplify data warehousing 

and at an attractive price. I bumped into an acquaintance of mine who stated 

that they are proposing to migrate their Amazon Redshift services to Snowflake. 

BI reporting tools have proliferated to the extent that project teams often chew 

up huge chunks of time on a project deciding which one to go for. The two most 

well-known heavyweights, Power BI and Tableau, seem to get the lion’s share 

of attention, but there are so many others vying for attention in this most-

saturated of marketplaces. 

All these products intend to make life as simple as possible for the end user. If 

chosen wisely, taking into costs, scalability and serviceability into account, all is 

good. However, mixing and matching a plethora of different products and never 

quite deciding which product to use when the project is already at its mature 

https://www.alteryx.com/products/platform-details/pricing
https://www.alteryx.com/products/platform-details/pricing
https://www.snowflake.com/
https://aws.amazon.com/redshift/
https://www.tableau.com/


stage of its development, can be very costly. ‘One-stop shops’ are great in 

principle, but in many cases, complex ‘Franken-systems’ are spawned. 

Just like Christmas time, when kids get spoiled for choice and get inundated 

with presents, they often don’t know what to do with many of them. 

Simplicity thrives, complexity dies 

It never ceases to amaze me how infrequent simplicity is encouraged on IT 

projects. I’ve been very fortunate in my career that I’ve been instrumental in 

making decisions to develop systems to service projects which are simple to use 

and simple in design. And here’s the kicker. Many of them still work to this 

day. They were built on standard technologies, with standard principles, 

modular enough to be taken apart at ease, fully documented and easily serviced 

by low to medium-experienced IT professionals. 

On the polar extreme, I was once asked to ‘lift and shift’ somebody else’s piece 

of software that was used in another organisation and then implement it into 

another project. Due to its complexity along with poor documentation, I advised 

that, perhaps, a more simple and manual approach might be a better option 

considering the aggressive timescales involved. I further reinforced this when I 

discovered that this software, as designed and used for the original company, 

was being dismantled after the brainchild that created it departed. I can only 

presume that the reason that the company dismantled it was on grounds of risk 

of not being able to be maintained by their own IT staff. 

For those of us who build databases on a frequent basis, we are accustomed to 

making the decision of simplicity vs complexity. I once got caught in this trap 

in my earlier years by creating a database that was over-normalised, over-

generic and overly dynamic. Man, did I get into a heap of trouble when the 

client made a major change in requirements! I practically had to dismember it 

and start from scratch; but this time, with a more balanced pragmatic approach 

in its design. 

 

As with nature, the laws of entropy apply to systems 

design. They gradually decline into disorder if not 

maintained. 

 

 



Perfection is the enemy of good 

Nothing runs to perfection unless it’s the punctuality of a Japanese bullet train 

or if one is running a hospital with no patients in it as so comically portrayed in 

one of the episodes of Yes Minister, a popular British political comedy series 

from the 1980s. Perfection simply does not exist in any project. 

 

 

 

A system which might have started crudely but has 

evolved gracefully to adapt to changing conditions will 

be far more useful than one which is destined to 

perfection but still on the drawing board when it is 

needed. 

 

All too often, so many in the IT industry attempt to design systems of perfection 

that anybody can use with little or no training; systems that are fully automated, 

dynamic and self-healing; and systems that require virtually no human 

interaction to maintain them. There has not been one project that I have worked 

on that has had a system with all or any of these qualities. 

Striving for perfection in any system can easily lead to overcomplicating and 

compromising it. 



Something doesn’t seem right… 

One of the most insidious aspects of complex systems is the sheer difficulty of 

verifying results from first principles. In the case of reporting systems, this is a 

real danger. Although every effort may have been made to preserve data lineage 

in any given reporting system, it becomes atrociously difficult to dissect the 

process of how the data was derived in complex systems. Vast amounts of time 

and resources can easily get used up to verify and identify problems within 

complex systems. Moreover, if the results are wrong, the first question most 

anybody would ask is for how long? And if the results are wrong, where did it 

go wrong? Can it be fixed easily? A system comprising of simple parts can 

often be easily fixed whereas a complex system, often monolithic in design, 

comprising an assembly of complicated code with an array of bespoke or 

obscure software is often not. 

It is incredibly easy to rely on data generated from complex systems as verbatim 

and true. The most alarming example of such an occurrence was during my civil 

engineering graduate years designing bridges. I used software to undergo a 

series of finite element calculations. The numerical results were spat out of a 

dot-matrix printer. I showed them to my boss who then said to me that I should 

sketch out by hand a basic moment diagram using the results. The bending 

moment diagram I sketched looked anything but healthy. Clearly, the error was 

in the input rather than the output. In this case, verifying the validity of the 

answer was made through common sense, basic knowledge of the principles and 

the ability to reverse-engineer the process. Glad that bridge was never built! 

 

 

 

 



Conclusion 

In 2017, I published an article, Do You Really Need That Expensive Online 

Work Management System, in which I weigh up the pros and cons of 

implementing corporate-wide work management systems. This article neatly 

follows on from what I wrote about in that article and highlights the case to 

keep systems as simple as possible. 

If further complexity must be built into the system to meet end requirements, 

then this may be the case; however, it pays to be prudent to explore peripheral 

options, procedures or working practices beforehand. For example, weighing up 

the benefits of implementing a complex fully automated system requiring little 

or no human interaction versus implementing a far cheaper, simpler and less 

automated system which may require more regular human interaction needs 

careful examination. If something breaks in the new system, can it be fixed by 

those in the IT team with basic all-round knowledge, or would a specialist need 

to be hired? 

Sometimes, it’s worth remembering. Less is more! 

 

 

 

https://www.linkedin.com/pulse/do-you-really-need-expensive-online-work-management-system-ellerton/
https://www.linkedin.com/pulse/do-you-really-need-expensive-online-work-management-system-ellerton/

