
Enticing Today’s Teenagers To Write Computer Code 
Shôn Ellerton, February 3, 2017 

 

 

 

Last year, my wife and I hosted two 16-year-old students from China as part of 
an international schools’ program here in Australia. One of the students 
approached me and asked which computer language should he learn. I pondered 
over the question he asked and then asked him what he wanted to write code for? 
After shrugging his shoulders, he just said it would be cool to learn how to do all 
that fancy stuff but didn’t know where to start. I didn’t mean to put him on the 
spot, but his response was valid enough. It really isn’t very clear-cut how you 
start to learn how to program, especially with the vast choice of languages and 
applications we now have available to use. I pre-empted his answer by alluding 
that he probably wanted to learn how to program to create and design games 
knowing that he probably would have tried to come up with an answer more 
scholastically-inclined! After nodding his head in affirmation, I conducted an 
Internet search and found a variety of courses specialising in creating gameware 
using classic game engines like Epic Games’s Unreal which is based on C++, a 
notoriously difficult language to master. The good news, I discovered, was that 
you can create your own games by using high-level software development kits 
provided by popular games engines thus circumventing the need to understand 
the underlying low-level language. This is similarly the case with creating 



websites using web-building platforms like Wordpress and Joomla without 
needing to understand the details of HTML and CSS. Granted, to build a good 
game or website still requires plenty of skill and creativity, but it is far easier now 
then it was a couple of decades ago. So my question is: how do we get kids 
interested in coding if all these high-level tools exist? Do we need them to be 
interested at all and, if not, will it matter in the future? 

 

My Own Early Experience 

I remember my father introducing me to two classic coin-operated video games 
during the early 80’s: Space Invaders and Galaxians. Along with the other 
multitude of video games littering the video arcade, I shudder to think how many 
quarters I popped into the slots of these machines. During this time, crude 
handheld game machines were available but they were exceptionally basic and 
unsatisfying, at least to me. I wanted to create one of these games for myself, so 
I then convinced my parents that a computer would be useful to help with my 
homework (a blatant lie). They believed me and then I was given a brand-
new Texas Instruments 99/4A for my birthday. It’s main competitor at the time 
was the iconic Commodore 64. Although the Commodore 64 had 64KB of RAM 
vs the 16KB in the TI 99/4A, the TI sported a more advanced 16-bit processor 
rather than the 8-bit processor the Commodore used. It’s probably worth 
remembering that these computers probably have less computing power than your 
modern alarm radio clock; however, they served their purpose well to educate 
those using them to learn how to program in the early 1980’s. 

After unboxing the TI and connecting everything up to a monitor and a tape deck 
(floppy disc drives were an expensive extra), I was ready to ‘rock-and-roll’. 
Itching to start programming a new game and with no desk space left, I proceeded 
to read through what must have been the driest most incomprehensible manual I 
ever read in my childhood. The TI came with its own dialect of BASIC (TI 
BASIC) and there was a step-by-step example of how to print the words: 
“Welcome to the world of computing!” on the screen. Although this was 
exhilarating, I was dismayed that it would probably take a very long time to 
program a game as good as Space Invaders! Thankfully, there were a variety of 
monthly magazines published which contained written code in TI BASIC to re-
create the games (and other useful applications) the programmers had shared in 
the magazine. In a world with no Internet, every release of a new magazine was 
a joyous occasion and I selected those articles containing interesting code to type 
into the TI. It was certainly tedious typing code into the computer, but damned if 



there isn’t a better way to know how to code! I then found in the local library, 
more books containing programs written in BASIC covering not only games but 
other applications such as money managers, word processors, and inventory 
management. Only then did I realise that not all BASIC programs are written in 
the same dialect so I started to learn how to translate these programs into TI 
BASIC. Not all programs were successful either due to the level of difficulty or 
the limitations of the computer. 

I soon found out that, once you understand the logic of programming, you can 
quickly learn other high-level languages. This was the case when I was doing a 
school tour of the Digital Equipment Corporation hard disc plant back in 
Colorado Springs and then invited to do a little programming for them using 
another language called Pascal. I was freely-provided with a line modem to access 
their mainframes and bulletin board systems (BBS) which opened out a new vista 
of untapped resources which would be near-impossible to obtain at the local 
library. To this day, I still use Usenet services which kind of resembles the old 
BBS. 

 

 
My old TI99/4A back in ’83 

 

 



 

How Low Can You Go? 

I got to creating some pretty good games on the old TI99/4A but there was one 
irksome issue which I simply could not overcome: performance. Playing an 
action game programmed with TI BASIC was like trying to swing a tennis racquet 
through a wall of jelly. It was excruciatingly slow. I then proceeded to expand my 
horizons by learning assembly language, which is about as low as you can go (in 
terms of programming languages parlance), short of writing in machine language. 
This was too much hard graft to learn (the manuals were almost 
incomprehensible) and it was not until years later that I was introduced to a 
somewhat higher level language called C. 

 

 
 

Some TI99/4A Assembly Code 



Today’s Computing Languages? Which to Learn? 

So back to today, the student I hosted asked the question which language should 
he learn. Today, we have a baffling array of languages to choose from. You only 
need to do an Internet search of today’s list of computing languages to find that 
one out. Back in the 80’s, it mattered as to what computer you had and you were 
limited as to what languages you can use, but your average PC can emulate just 
about any type of language you wish to learn. 

Just to set the record straight, I am not including SQL (Structured Query 
Language) here. Agreed, it is highly desirable to learn it if you are dealing with 
manipulating data, put it is not considered a programming language. Moreover, 
it is unlikely that your teenager will be remotely interested in dealing with data 
sets, unless you were as geeky as I was with creating inventories of my hiking 
pursuits around the Colorado mountains, another hobby of mine I had. 

 

C#.NET 

My own personal experience in the field I work in (namely, project management 
systems) is that C#.NET has always been the dominating language and I have not 
seen much in the way of its decline either. VB.NET (Visual Basic) does pretty 
much the same thing as all the .NET languages gets compiled into the same low-
level language, but C#.NET is far more common and is generally preferred by the 
programmer community due to its less wordy and more terse structure. A little 
more cryptic than VB but worth the extra time to learn. You can do pretty much 
everything with C#.NET and you can start learning how to use it and create some 
pretty interesting applications. Although this is quite a bit more complicated than 
the BASIC I grew up with, you can start simple and eventually learn to create 
complex applications complete with an array of re-usable classes and customised 
global functions. Unless web design is of particular interest, learning to build a 
Windows client application may be a better place to start. 

 

C and C++ 

C and C++ are rather difficult-to-learn low-level languages which, if mastered, 
can open the doors to creating other languages and applications requiring high 
efficiency and performance, like games and electronic devices. My experience 
using C was, somewhat, short-lived when, after installed 40+ Borland C floppy 
discs into my under-powered PC during the mid-90s, it crashed repeatedly and I 



succumbed to frustration and impatience; both common symptoms of working 
with this language. If you want to program devices or robots, you will probably 
find this language a compulsory requirement. In any case, those who master C 
will be the envy of those who don’t know it. At least, I was envious. 

 

 
Students programming robots using C 

 

Java 

My experience with Java is even less and I have, personally, not run across many 
applications in the field using it (except for those using Android phones). I always 
like the idea that this is a portable language that can run across different operating 
environments. Java is a well-known language, however, and I predict it will be 
around for some time to come. Learning Java is not terribly easy but, from those 
I have spoken to who have programmed in it, found it to be a very rewarding 
language to learn. Great if you want to create games and other apps for your 
Android phone! 

 

 



Python and Perl 

These are both scripting languages with Python being a relatively new language 
and seeming to be all the rave basking in the sunshine of relative simplicity. Many 
of my friends and relatives in the scientific and business community are learning 
Python due to its intuitive nature unlike Perl. I’m not fond of the way Python 
forces programmers to indent and would rather stick with Perl’s bracket-based 
structure, but this is just my personal preference. Whether Python or Perl offers a 
rich enough environment for someone to learn at an early age is open to 
conjecture and then there is the issue of the longevity of the language, although 
Perl has been around quite some time now. 

 

COBOL and FORTRAN, Really?? 

Don’t fall off the edge of your seat, these two 1950s-originated languages are still 
with us today. Along with C, I consider these to be the trio of the granddaddies 
of computer languages. 

Let’s start with FORTRAN (Formula Translation Language). 

Should your teenager have a fascination with supercomputers having the ability 
to number-crunch complex fluid dynamics problems, weather patterns, or other 
physics-related problems, then this language might be of interest. I learnt 
FORTRAN 77 during my engineering university days and found it very easy to 
learn not being wholly unlike the BASIC language I first started to learn. 
Unfortunately, our FORTRAN lecturer was as dry as a bone that was dug up from 
an Egyptian tomb so I ended up dozing off most of the time during these lectures. 
C++ is also popular in this field but, as mentioned above, it is considerably more 
difficult to learn. 

 

 
 

Beautiful output from Earth 

School Null showing weather 

patterns calculated by 

supercomputers 

 

 



Now let’s move on to COBOL, or Common Business-Oriented Language. 

Interestingly, much news has been publicised about the many failed attempts of 
Java to kill off the world’s many existing COBOL-based systems. I personally 
find COBOL fascinating. 

Fascinating that it: 

 has only had less than 10 major revisions since 1959 
 has survived since 1959 
 is still used today by the majority of major financial and critical-

infrastructure industries such as airline ticketing and ATMs 
 it was created by an equally interesting person, Grace Hopper 
 it is a language which fewer and fewer people know how to use (although 

there has been a recent resurgence of some universities teaching it) 
 it is downright stable 
 it is secure by the fact that it is becoming more obscure 

A bit of a weird language to learn (and very wordy!), but COBOL compilers can 
be used in today’s PC’s. Last year, I tried out Microfocus’s COBOL compiler for 
MS Visual Studio. 

There is much speculation as to the future value of learning COBOL; however, 
to be really effective as a COBOL programmer, you will probably need to 
understand all the other bits and pieces surrounding the COBOL environment 
(e.g. IBM z/OS, CICS, etc). 

If your teenager is interested in the world of programming systems involving 
financial or other business-related data, this might be an interesting language to 
think about; however, I would also recommend learning Java as well. Learning 
how to program databases using one of the well-known vendors such as Oracle, 
Microsoft, IBM or MySQL along with a sound knowledge of their SQL dialects 
will be essential. 

One thing is certain, COBOL programmers are not the easiest to find, many of 
them being retired or have passed away! 

 

What Would Create That Interest to Learn Computer 

Programming? 

Just to state the obvious, if your teenager does not show any interest in 
programming, don’t force the issue. However, if your teenager is a heavy user of 



computers and does show an interest in getting an edge over his peers in 
computing, then it might pay dividends to point out that learning what happens 
‘behind the scenes’ of the machine could be very rewarding indeed, especially 
when emerging into the technology-related workforce. Before the Internet was 
mature enough to provide enough rich content in delivering step-by-step tutorials 
in learning how to program, my generation generally relied on, usually expensive, 
programming language reference books found at a very good bookstore (itself a 
dwindling resource). The library never had anything up to date! 

In short, to create that spark that would generate an interest in learning a computer 
language is that there needs to be an end result: creation of a game, an inventory 
tracker, a dynamic website or whatever. Before the days of university courses 
offering computer science or business computing, the majority of computer 
programmers were largely self-taught in their own professions because there was 
a real need to do so. This was the case with my grandfather who learnt FORTRAN 
4 (on ancient machines the size of a large truck running on valves complete with 
punch cards) to calculate statistical results of sugar beet trials in the 1960’s. 

 

 
1960’s punch‐card containing FORTRAN code 

 

Does It Matter If Nobody Was Interested In 

Programming? 

As technology advances, our distance from the underlying base technology also 
increases. For example, our definition of computer literate typically encompasses 
someone who can competently put together a reasonable Microsoft Excel report 
together or know how to stitch up a document using Adobe Acrobat. Many of 
today’s applications are quite complicated to use without knowing a shred of what 
happens under the bonnet. For example, heavyweight applications like AutoCAD 
or Adobe Photoshop are good examples of this. I have used AutoCAD extensively 



in the past and still feel somewhat comfortable with it, but as soon as I open up 
Adobe Photoshop, I get that blank look on my face as I struggle to do anything 
remotely complex with an image. Database products are complex enough to 
understand in their own right; for example Microsoft’s SQL Server and Oracle’s 
database product. But remember that many of these applications are written using 
low-level languages like C or C++, so one can imagine the sheer complexity of 
the code here. So how do you write C itself? Another C compiler? Assembly? 
The list goes on. 

We create tools to create more advanced tools, but, ultimately, what would 
happen if the last person on Earth died who understood the very basics of how 
machine code or assembly language is put together? Would it make a difference? 
I don’t know the answer to this, but what I do know was that I wanted to re-create 
that Space Invaders game and play for free when I was a young teenager! 


